
PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
ARTICLES

Identity of the universal repulsive-core singularity with Yang-Lee edge criticality

Youngah Park1,2 and Michael E. Fisher1
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Lattice and continuum fluid models with repulsive-core interactions typically display a dominant, critical-
type singularity on the real,negativeactivity axis. Lai and Fisher recently suggested, mainly on numerical
grounds, that this repulsive-core singularity is universal and in the same class as the Yang-Lee edge singulari-
ties, which arise above criticality at complex activities withpositivereal part. A general analytic demonstration
of this identification is presented here using a field-theory approach with separate representations of the
repulsive and attractive parts of the pair interactions.

PACS number~s!: 05.70.Jk, 64.60.Fr, 82.60.Lf, 51.30.1i
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I. INTRODUCTION

In 1952 Lee and Yang@1# proved that the zeroes of th
partition function of a ferromagnetic Ising model~or equiva-
lently, a lattice gas with single-site hard cores! as a function
of complex magnetic fieldH ~or chemical potentialm! are
confined to the imaginaryH axis for real temperaturesT.
Yang and Lee argued@2# that for a system above its critica
temperatureTc , the partition function must be nonzer
throughout some neighborhood of the real axis in the co
plex reduced magnetic-field plane,

h5H/kBT[h81 ih9. ~1!

Thus, for T.Tc , a gap free of zeros will be found on th
imaginaryh axis with edges at, say,6 ihs(T). Equivalently,
in fluid language, forT.Tc , there will be a gap in the com
plex activity plane with edges at

z5zs8 ~T!6 izs9 ~T!, ~2!

as illustrated in Fig. 1. Here we define the reduced activity
d spatial dimensions by

z5ebmv0 /LT
d , ~3!

whereb51/kBT, while v0 is a microscopic reference vo
ume~taken as the cell volume for a lattice gas! andLT is the
thermal de Broglie wavelength.

If one defines the density of Yang-Lee zeroes,g(h9), so
that whenN, the number of spins~or lattice sites! becomes
infinite, Ng(h9)dh9 approaches the number of zeros b
tweenih9 andi (h91dh9) on the imaginaryh axis, one must
have g(h9)[0 for uh9u,hs(T), for T.Tc . Kortman and
Griffiths @3# pointed out that the density of zeroes beyond
gap should be expected to exhibit a power law singulari
the Yang-Lee edge singularity@4#–of the form

g~h9!; zuh9u2hs~T!zs for uh9u→hs~T!. ~4!
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This singularity proves analogous to an ordinary critic
point obeying scaling laws and exponent relations, althou
there is only one relevant scaling field@3, 4#. Thus the basic
exponents in Eq. ~4! satisfiess51/d5(d221h)/(d12
2h) @4#.

In a general renormalization group analysis, it was sho
@4# that the field theory controlling the Yang-Lee fixed poi
is described by a pure imaginaryiw3 coupling. This leads to
a critical dimensiondc56 above which the classical, mean
field value @4# s5 1

2 applies. To first order ine562d.0,
one hass(d)5 1

22 1
12e andh52 1

9e. Expansions ofs(d) to
order e3 are known@5#, and one hass(1)52 1

2 @6#, s(2)
52 1

6, and finds, numerically,s(3).0.088@7#; see Lai and
Fisher@7# who review previously known relationships of th
Yang-Lee edge singularity to a number of different pro

FIG. 1. Complex activity plane for a lattice or continuum flu
system at temperaturesT.Tc , above gas-liquid criticality. The
Yang-Lee edge singularities are located atz5zs8 (T)6 izs9 (T),
while the repulsive-core singularity lies on the real negative activ
axis z5z0(T). ~Note that the branch cuts running from the Yan
Lee edges willnot, in general, be linear as shown, purely schema
cally, here: indeed, for a simple lattice gas, the cuts lie on circ
centered atz50.!
6323 © 1999 The American Physical Society
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lems, specifically, isotropic branched polymers or, equi
lently, undirected lattice animals with or without loops a
lowed, in (d12) dimensions@8, 9#; Anderson localization
@10#; anddirectedbranched polymers~or directed, loop-free
lattice animals! in d11 dimensions@11#.

By contrast, an apparently quite different type of sing
larity arises in fluid systems when the particle interactio
have repulsive cores. If the pair interaction potentials
purely repulsive~i.e., positive!, the ~reduced! cluster inte-
grals, bn(T), in the activity or fugacity series for the~re-
duced! pressure, namely,

p̄[
pv0

kBT
5 (

n51

`

bn~T!zn, ~5!

are known@12# to alternate in sign: this implies a domina
singularity on thenegative zaxis that determines the radiu
of convergence,R, of the series: see Fig. 1. In the vicinity o
this singularity, say atz5z0(T)52R, the reduced pressur
can be written as

p̄~z!5 p̄01 p̄1~z2z0!1 p̄2~z2z0!21•••

1P~z2z0!f@11au~z2z0!u1•••#1•••, ~6!

where the exponentsf andu are anticipated to be noninte
gral.

Indeed, in 1984, Poland@13# studied a variety of lattice
models and a continuum fluid of hard squares and propo
that this repulsive-core singularity is characterized by auni-
versal exponentf(d). Subsequent confirmation came fro
Baram and Luban@14# who investigated further models in
cluding dimers on lattices, parallel hypercubes in continu
space, and thesoft-core single-component Gaussia
molecule model. More recently, Lai and Fisher@7# found
similar behavior in abinary Gaussian-molecule mixture us
ing very long series expansions ford51,...,6. In that case
the singularity atz5z0 was drawn out into a continuou
locus; but the estimates forf(d) supported the universality
hypothesis.„Precise estimates, for the leading ‘‘correctio
to-scaling’’ exponentu(d), in Eq. ~6! for all d, including
f(1)51, u(2)55/6, andu(3).0.62, were also generate
@7#.…

However, Lai and Fisher@7# noticed in particular that,
when compared with previous knowledge about the Ya
Lee edge exponents(d), the exact results forf(d) for d
51 andd5` @15#, and for d52 @14,16#, and the various
numerical estimates@7# for d>2, strongly suggested th
identification

f~d!5s~d!11 for all d. ~7!

Hence they proposed@7# that theuniversal repulsive-core
singularity belongs to the Yang-Lee edge critical universa
class.

In analytical support of this identification~for generald!
they appealed to earlier work by Kurtze and Fisher@17# who
had proved that whenT→`, the Yang-Lee edge singularit
in ferromagnetic Ising models precisely describes the do
nant singularity on the negativez axis of a fluid of hard
dimerson the same lattice, each dimer occupying one bo
and two adjacent lattice sites. This correspondence wit
-

-
s
e

ed

-

y

i-

d
a

dimer gas was carried further by Shapir@18# who used field-
theoretic arguments to demonstrate the identity generic
for all T.Tc . However, dimers are rather special objec
with orientational degrees of freedom~although these seem
post facto, to have no effect onf(d) @14#!. Furthermore,
Shapir’s field-theoretic approach was rather special and
not seem extendable to more general particles with soft
pulsive cores, with the additional presence of attract
forces, or to systems also displaying critical behavior
positivez @7# ~as illustrated in Fig. 1!.

In this article we repair this gap in the theory. Speci
cally, we consider a general single-component fluid with
pair interaction potential,U(r ), which contains both repul-
sive and attractive parts: of course, repulsive terms are
ways essential to ensure thermodynamic stability. To be c
crete and explicit we analyze lattice systems in wh
multiple occupancy of a site is forbidden; however, it mu
be stressed that the repulsive interactions we consider arenot
confined to such trivial single-site hard cores. On the c
trary, essentially we suppose only that the potentialU(r ) is
of finite range and may be decomposed according to

Û~k!5 (
RÞ0

eik•RU~R!5ŵ~k!2 v̂~k!, ~8!

where the sum runs over lattice sitesR5r j , while the repul-
sive and attractive parts,ŵ(k) and v̂(k), respectively, are
both positive~if they do not vanish identically!. More spe-
cifically we will use

ŵ~k!5ŵ0~12k2a21••• !.0, ~9!

v̂~k!5 v̂0~12k2b21••• !.0, ~10!

so thata andb represent the interaction ranges of the rep
sive and attractive components. The real-space potentials
ing between sitesj and k ( j Þk), namely,wjk5w(r k2r j )
and v jk5v(r k2r j ), follow by Fourier inversion. Ford53,
one may imagine Yukawa forms:w(r )5W0e2r /a/r and
v(r )5V0e2r /b/r with a,b; but that is certainly not essen
tial. Likewise, the leading lattice isotropy assumed for co
venience in Eqs.~9! and~10! is not necessary. Our treatme
extends straightforwardly to multicomponent fluids@7# and,
at least formally, generalizes readily to continuum system

On the basis of Eqs.~8!–~10!, we develop a field-theoretic
analysis and show that there is, in general, a repulsive-c
singularity at somez0(T) on the negative activity axis~see
Fig. 1! that is described within an Landau-Ginzburg-Wilso
~LGW! renormalization group framework by a fixed poi
Hamiltonian with a purely imaginary cubic coupling,iw3,
and, hence, lies in the same universality class as Yang-
edge criticality. A notable aspect of our treatment is th
separate—sine-Gordan@19# and Kac-Hubbard-Stratonovic
~KHS! @20–22#—transformations are used for handling th
repulsive and attractive parts of the interaction potent
compare with Refs.@23# and @24#.

II. FORMULATION

For a lattice of volumeV with sites labeled j ,k,l
51,2,..., N5V/v0 , let r j50 or 1 according as sitej is or is
not occupied by a particle. Then, recalling Eqs.~3! and~8!–
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~10! et seq., the grand partition function for the lattice syste
is

Z~T,z!5Tr r
NH z( jr j expF2 1

2 b(
j Þk

r j~wjk2v jk!rkG J .

~11!

Now, utilizing the positivity of ŵ(k) and v̂(k), we may
apply a sine-Gordon transformation@19# to the repulsive
terms,wjk , and a KHS transformation@20–22# to the attrac-
tive termsv jk ~where, as usual, it is most convenient to u
lize periodic lattice boundary conditions!. Neglecting an un-
important constant factor, this yields

Z5E Dw

Auwu
E Dx

Auvu

3expF2 1
2 (

j ,k
w jwjk

21wk2 1
2 (

l ,m
x lv lm

21xmG
3Trr

NH z( jr j expF(
j

~2 iw j1x j !r j G J , ~12!

wherew5@bwjk#5@wjk
21#21 and similarly forv. Performing

the trace over ther j then yields the transformed reduce
Hamiltonian

H@w,x#5 1
2 (

j ,k
~w jwjk

21wk1x jv jk
21xk!

2(
j

ln~11ze2 iw j 1x j !. ~13!

Now, in seeking to understand the possible singularitie
the reduced pressurep̄(T,z)5(v0 /V)ln Z, we will, initially,
neglect fluctuations and study the saddle point~s! which ex-
tremize the integrand exp$2H@w,x#% in Eq. ~12!. We expect
spatially uniform solutionsw j5w0 , x j5x0 ~all j! to suffice:
from ]H/]w j50, one thus finds

(
k

wjk
21w01 i

ze2 iwo1x0

11ze2 iw01x0
50, ~14!

for the repulsive terms. On premultiplying by the matrixw
5@bwlm# ~see, e.g., Ref.@25#! and using the Fourier repre
sentation~9!, one obtains the simpler form

iw05bŵ0 /~11z21e2~x02 iw0!!. ~15!

Similarly from ]H/]x j50 we find

x05b v̂0 /~11z21e2~x02 iw0!!, ~16!

for the attractive terms.
Before analyzing these coupled saddle-point equatio

note that if one puts

c5x02 iw0 ~17!

the two equations combine simply and can be rewritten

ce2c52z~c1bU0!, ~18!
in

s,

where the total strength of the pair potential is measured

U0[Û~0!5ŵ02 v̂0 . ~19!

Furthermore, by substitution of any solution of Eq.~18! on
the right-hand sides of Eqs.~15! and ~16!, one obtains the
separate solutionsw0 , which may evidently be imaginary
andx0 .

III. TRIVIAL HARD CORES AND GAS-LIQUID
CRITICALITY

We remark, first, that following the pioneering study
Hubbard and Schofield@26#, all authors interested in ordi
nary gas-liquid criticality have treated the repulsive intera
tions in a fluid by use of areference system: for a recent
example, see Brilliantov@27#. Unless this reference fluid is
essentially trivial, as for single-site hard cores on a latti
this entails increasingly detailed knowledge of the corre
tion functions of the repulsive-core system@26,27#. Never-
theless, it will be helpful for us to make contact with th
approach by, initially, neglecting the nontrivial repulsive i
teractions embodied inw(r ). If the attractions are also ne
glected, the grand partition function~11! reduces simply to
Z5(11z)N. This predicts a repulsive-core singularity
z0521 ~all T! with an exponentf(d50)50(log) @7#. Evi-
dently, the actual dimensionality,d, plays no role.

Now, following traditional treatments~e.g., Ref.@25#! let
us introduce attractive terms withv̂(k).0. The KHS trans-
formation then leads to the saddle-point equation~18! in
which, now,U052 v̂0,0 is negative and we can identifyc
directly with x0 ~since ŵ050 and * Dw etc., can be ig-
nored!. Figure 2 then provides a graphical representation
Eq. ~18! which can be readily analyzed: note that the bo
curve depictsce2c which has a point of inflection atcc
52 and a corresponding tangent that intersects the axi
c54: see the dashed line.

FIG. 2. Plot ofce2c ~bold curve! versusc to elucidate solu-
tions of the saddle-point equation~18! in the case of only single-site
repulsive hard cores with attractive potentials of strengthv̂0

(52U0), for various temperatures,b1 , bc , andb2 , and positive
activities z. The open circle marks the point of inflection whic
serves to locate the~classical! gas-liquid critical point; the dashed
line is the associated tangent. The solution lines have slopes2z in
accord with Eq.~18!.
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By inspection, one then sees that whenz increases from
z50 ~along the real axis! for temperatures such thatb v̂0
,4, there is always a single saddle-point solution,c0(T,z),
which varies analytically withT and z: see, e.g., the lines
labeled~a! and ~b! in Fig. 2. Conversely, for lowerT, when
b v̂0.4, there is a single analytic solution,c0(T,z), for
smallz @as on the line~c!# but for an intermediate range ofz
three distinct solutions arise, as illustrated by~d!; finally, for
largerz only a single solution remains: line~e!. Evidently the
three solutions merge at a bifurcation point determined
the inflection point atcc52: this leads tobcv̂054 andzc
5e22.0.135. ExpandingH@x# in powers of (b2bc), (z
2zc) and dx j5x j2xc , all taken as real variables, show
that this saddle-point bifurcation simply represents the an
pated classical or mean-field gas-liquid critical point
kBTc

05 1
4v̂0 . As usual, the corresponding LGW Hamiltonia

can be used as a starting point in a field-theoret
renormalization-group~RG! treatment which then leads to a
the standard results.

On the other hand, forb&bc , i.e., T*Tc , one can fol-
low Ref. @4# and discover two Yang-Lee edge singularities
complexz ~with small imaginary parts whenT is nearTc!: at
the saddle-point level these haves5 1

2; but the fixed-point
Hamiltonian is controlled by ani (dx)3 coupling leading, as
explained above, to an RGe562d expansion@4#.

If, next, small repulsive terms,ŵ.0, are introduced, the
overall interaction parameterU05ŵ02 v̂0 , in Eq. ~18! re-
mains negative, and the arguments proceed in essentiall
same manner~although, in due course, the fieldw for the
repulsive terms would normally be integrated out!. As ex-
pected, neither the usual gas-liquid nor the Yang-Lee e
singularities undergo any change in character. Howeve
ŵ0 becomes sufficiently large,U0 becomespositive and
then, clearly, the previous analysis fails! In particular,
seen in Fig. 3@lines ~a! and~b!#, for positive~real! z, there is
always only a single, smoothly varying saddle-point soluti
c0(T,z). Of course, this doesnot ~necessarily! mean that the
usual gas-liquid and Yang-Lee edge singularities are l

FIG. 3. Plot of ce2c to illuminate the saddle-point equatio
~18! as in Fig. 2; but note the change in scales. The domin
repulsive case withU05ŵ02 v̂0.0, is illustrated for positive ac-
tivities z @lines ~a! and ~b!# and negative activities:~c! and ~d! and
the tangent~dashed line! which locates the repulsive-core singula
ity at z5z0(T),0 with field c0(T).
y

i-
t

l

t

the

e
if

s

,

t.

Rather, the form of the Hamiltonian,H@w,x#, represents an
inadequate starting point for a perturbative RG approa
instead, it becomes necessary to integrate out~at least to
some degree! the repulsive terms, i.e., to perform some* Dw
integrals and, thereby, make contact with the reference-fl
treatments@25–27#.

IV. THE REPULSIVE-CORE SINGULARITY

On the other hand, when the repulsions dominate, so
U0.0 ~as we will assume hereon!, one sees from Fig. 3
@e.g., lines~c! and ~d!# that for a realnegative zthere is a
unique positive saddle-point solution, sayc2(T,z),1, that
vanishes whenz→0. However, whenz approachesz0(T)
,0 ~from above! a bifurcation point is reached at which th
saddle point must become complex: see the broken line
Fig. 3 that corresponds toz5z0(T). ~At z5z0 a second,
larger saddle-point solution,c1(T,z), merges with
c2(T,z). For z much larger, additional realnegativesaddle-
point solutions,c68 , appear, but these are not relevant to t
dominant repulsive-core singularity.! As is evident from Fig.
3, the bifurcation point is located by the tangent pass
throughc 52bU0,0: this leads to

0<c0~T!5 1
2 bU0$@11~4kBT/U0!#1/221%,1, ~20!

and

z0~T!52@12c0~T!#exp@2c0~T!#,

'21/ebU0@11O~1/bU0!#, ~21!

the last result applying for strong repulsions (bU0→`).
Clearly, this saddle-point bifurcation represents t
repulsive-core singularity.

Incidentally, if following Hauge and Hemmer@15#, we
had treated the (d51)-dimensional continuum hard-rod ga
with additional infinite-range, infinitely weak repulsive Ka
potentials, we would, at this point, have foundz05
21/ebU0 in precise accord with the exact~limiting! calcu-
lations@15#. But, of course, our saddle-point treatment is n
restricted tod51 even though in the Kac limit it will also
become exact.

To complete the analysis we may now follow standa
procedures by expanding about the saddle point valuesw0
and x0 @following from Eqs. ~15!–~17!#. In terms of dw j
5w j2w0 , dx j5x j2x0 , anddc j5dx j2 idw j , the Hamil-
tonian truncated at fourth order becomes

H@dw,dx#5 1
2 (

j ,k
~w jwjk

21wk1x jv jk
21xk!

1(
j

@ 1
2 r 0~dc j !

22g0~dc j !
31u0~dc j !

4#,

~22!

where it is convenient to put

z l~T,z![2z21e2c0/~11z21e2c0! l , ~23!

nt
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~which is real and positive forz.z0 when l 50,2,4,...! so
that r 05z2(T,z) and

g05 1
2 z3~11z0!, u05 1

24 z4~114z01z0
2!. ~24!

In the usual continuum approximation this becomes

H5E ddx@ 1
2 r 11dw2~x!1r 12dw~x!dx~x!1 1

2 r 22dx2~x!

1 1
2 cw~¹d w!21 1

2 cx ~¹dx!22g0dc3~x!1u0dc4~x!#,

~25!

with cw5a2/bŵ0 andcx5b2/b v̂0 and

r 115kBT/ŵ02z2~z,T!, r 225kBT/ v̂01z2~z,T!,

r 1252 i z2~z,T!. ~26!

Before proceeding generally, let us suppose that only
pulsive terms act, i.e.,v̂050. Then we may drop the integra
* Dx and see, by Eq.~17!, that dc52 idw; but note that
c0(T) remains real, positive and less than unity. The c
tinuum Hamiltonian then reduces to

H0@dw#5E ddx@ 1
2 t0~dw!2

1 1
2 cw~¹dw!22 ig0dw31u0dw4#, ~27!

where the controlling coefficient is

t0~T,z!5r 115
1

bŵ0
S 12

z

z0
D @12zz0e2c0~T!#

@11zec0~T!#2 , ~28!

which is positive for smallz, decreases asz52uzu increases
in magnitude, and vanishes linearly whenz→z0(T)1,0.
The fourth order coefficient,u0 , is positive and approache

u005 1
4 ~12c0!~12c01 1

6 c0
2!/c0

4 . 0, ~29!

when z→z0(T), while the cubic term is purely imaginar
with a coefficient approaching

g0052 1
6 ~12c0!~22c0!/c0

3 , 0. ~30!

At this point we have thus reached the same stage a
the original treatment@4# of the Yang-Lee edge singularities
The imaginary termi (dw)3 dominates the behavior. A
momentum-shell RG analysis reveals an upper critical
mensiondc56, an exponenth'2 1

9e for e562d.0, and,
using a unit cutoff in momentum space, a fixed point va
of g0* '(e/54K6)1/2, whereK6 is the area of the unit spher
at d56 dimensions. All other results follow as previously@4,
7#.

Returning now to the general case of Eq.~25!, in which
attractive interactions are present~i.e., v̂0.0! but U0 re-
mains positive, we anticipate that only one linear combi
e-

-

in

i-

e

-

tion of dw anddx will become critical. To check this at the
saddle-point level, it suffices to put

dx~x!5dx8~x!1 i ~z2 /r 22!dw~x!. ~31!

The quadratic~nongradient! terms in Eq.~25! then become

1
2 t~df!21 1

2 r 22~dx8!2. ~32!

The coefficientr 22(T,z) remains positive for all negativez
but one finds

t~T,z!5r 112
r 12

2

r 22
'

t0~T,z!

@11b v̂0~12c0!/c0
2#

, ~33!

for z.z0 : thus, by Eq.~28!, t vanishes whenz→z0(T).
Integration over the noncritical fielddx8(x) is hence justi-
fied and may be carried out perturbatively. Apart from ad
tive terms that are nonsingular nearz0(T), this finally leads
to a renormalized LGW Hamiltonian

HR@dw#5E ddx@ 1
2 tR~dw!21 1

2 aR
2~¹d w!2

2 ihRdw2 igR~dw!31•••#, ~34!

where the fourth and higher order terms have been drop
For v̂0 sufficiently small, the renormalized couplingstR and
gR will differ little from t andg and, in particular,hR andgR
will be real, so that thei (dw)3 term once again dominates

Stability of the saddle point requires that the renormaliz
repulsive range,aR , in Eq. ~34! be real ~and positive!.
Roughly, we expectaR

2}(a2ŵ02b2v̂0): the positivity of this
factor then represents a previously unstated restriction on
initial potentials. In practice, however, if this~or the more
precise! condition fails, it may be sufficient, as explained
the discussion of gas-liquid criticality, to perform furthe
nonperturbative renormalizations to dampen the attractive
teractions forz,0 and so expose again a saddle-point re
resentation of the repulsive-core singularity atz0(T). Cer-
tainly, we must expect the form~34! to represent the
singularity whenever it is actually realized in a system; a
then, clearly it must belong to the Yang-Lee edge univers
ity class.

V. CONCLUSIONS

In summary, by using separate field-theoretic transform
tions for the repulsive and attractive parts of the pair int
actions in a fluid, we have demonstrated, in general, the p
ence of a universal repulsive-core singularity on the nega
axis at a valuez0(T),0: see Fig. 1. The behavior of th
pressure in the vicinity ofz0 is stated in Eq.~6!. The singu-
larity belongs to the same universality class as Yang-L
edge criticality, as proposed by Lai and Fisher@7#: see Eqs.
~1!–~4! and Fig. 1. The basic critical exponents are rela
via Eq. ~7! ~see also@7#!; the borderline dimensionality is
dc56; and aniw3 coupling characterizes the LGW fixed
point Hamiltonian@4#.
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