PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

ARTICLES

Identity of the universal repulsive-core singularity with Yang-Lee edge criticality
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Lattice and continuum fluid models with repulsive-core interactions typically display a dominant, critical-
type singularity on the reahegativeactivity axis. Lai and Fisher recently suggested, mainly on numerical
grounds, that this repulsive-core singularity is universal and in the same class as the Yang-Lee edge singulari-
ties, which arise above criticality at complex activities wiibsitivereal part. A general analytic demonstration
of this identification is presented here using a field-theory approach with separate representations of the
repulsive and attractive parts of the pair interactions.

PACS numbgs): 05.70.Jk, 64.60.Fr, 82.60.Lf, 51.30.

[. INTRODUCTION This singularity proves analogous to an ordinary critical
point obeying scaling laws and exponent relations, although
In 1952 Lee and Yan§1] proved that the zeroes of the there is only one relevant scaling fidl8, 4]. Thus the basic
partition function of a ferromagnetic Ising model equiva- exponento in Eq. (4) satisfieso=1/6=(d—2+ 7)/(d+2
lently, a lattice gas with single-site hard cores a function — %) [4].
of complex magnetic fieldH (or chemical potentiau) are In a general renormalization group analysis, it was shown
confined to the imaginaryd axis for real temperatures.  [4] that the field theory controlling the Yang-Lee fixed point
Yang and Lee arguel®] that for a system above its critical is described by a pure imaginairg® coupling. This leads to
temperatureT., the partition function must be nonzero a critical dimensiord.=6 above which the classical, mean-
throughout some neighborhood of the real axis in the comfield value[4] =3 applies. To first order ie=6—d>0,

plex reduced magnetic-field plane, one haso(d)=3— e and 7= — ie. Expansions ofr(d) to
order € are known[5], and one hasr(1)=—3 [6], o(2)
h=H/kgT=h'+ih". (1)  =-4¢, and finds, numericallyg(3)=0.088[7]; see Lai and

Fisher[7] who review previously known relationships of the
Thus, forT>T,, a gap free of zeros will be found on the Yang-Lee edge singularity to a number of different prob-
imaginaryh axis with edges at, say;ih,(T). Equivalently,
in fluid language, folT>T,, there will be a gap in the com- Imz &
plex activity plane with edges at

z=z(T)xizl(T), 2
. . . . o "+Z¢7'”(T)
as illustrated in Fig. 1. Here we define the reduced activity in
d spatial dimensions by 2. (T)
") dl '
z=ePivy AT, 3 zy(T) Y Rez
Repulsive-core l_z " (T)
where 8=1/kgT, while vq is a microscopic reference vol- singularity 4

ume(taken as the cell volume for a lattice gasnd At is the
thermal de Broglie wavelength.

If one defines the density of Yang-Lee zerogéh"), so
that whenN, the number of spingor lattice siteg becomes

'nfm'te_' ,'>| g(h’_’)d’h” ap”proaches_ the_ number_ of zeros be- FIG. 1. Complex activity plane for a lattice or continuum fluid
tweenih” andi(h”+dh") on the imaginanh axis, one must  gystem at temperatureg>T,, above gas-liquid criticality. The
have g(h”)=0 for [h"|<h,(T), for T>T.. Kortman and  yang-Lee edge singularities are located ztz,(T) *iz/(T),
Griffiths [3] pointed out that the density of zeroes beyond theuhile the repulsive-core singularity lies on the real negative activity
gap should be expected to exhibit a power law singularity—axis z=z,(T). (Note that the branch cuts running from the Yang-

the Yang-Lee edge singularif#]—of the form Lee edges wilhot, in general, be linear as shown, purely schemati-
cally, here: indeed, for a simple lattice gas, the cuts lie on circles
g(h”)~|[h"|=h,(T)| for |h"|—h(T). (4)  centered az=0.)
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lems, specifically, isotropic branched polymers or, equiva-dimer gas was carried further by Shafis] who used field-
lently, undirected lattice animals with or without loops al- theoretic arguments to demonstrate the identity generically
lowed, in (d+2) dimensiond8, 9]; Anderson localization for all T>T.. However, dimers are rather special objects
[10]; anddirectedbranched polymeréor directed, loop-free  with orientational degrees of freedofalthough these seem,
lattice animalsin d+1 dimensiong11]. post fact to have no effect onp(d) [14]). Furthermore,

By contrast, an apparently quite different type of singu-Shapir’s field-theoretic approach was rather special and did
larity arises in fluid systems when the particle interactionsnot seem extendable to more general particles with soft re-
have repulsive cores. If the pair interaction potentials argulsive cores, with the additional presence of attractive
purely repulsive(i.e., positive, the (reduced cluster inte- forces, or to systems also displaying critical behavior for
grals, b,(T), in the activity or fugacity series for the@e-  positivez [7] (as illustrated in Fig. 1

duced pressure, namely, In this article we repair this gap in the theory. Specifi-
. cally, we consider a general single-component fluid with a
_ pvg N pair interaction potentialJ(r), which contains both repul-
= kaT ba(T)Z", (®  sive and attractive parts: of course, repulsive terms are al-
BT n=1 p . ’ p

ways essential to ensure thermodynamic stability. To be con-
are known[12] to alternate in sign: this implies a dominant crete and explicit we analyze lattice systems in which
singularity on thenegative zaxis that determines the radius multiple occupancy of a site is forbidden; however, it must
of convergenceR, of the series: see Fig. 1. In the vicinity of be stressed that the repulsive interactions we consideroare
this singularity, say at=z,(T)=—R, the reduced pressure confined to such trivial single-site hard cores. On the con-
can be written as trary, essentially we suppose only that the poteritié) is

of finite range and may be decomposed according to

P(2)=Po+P1(Z—20) + P22~ 2Zg)*+ -
+P(z—z9)[1+ay(z—20)+ - ]+-, (6 lAJ(k):F;O e RU(R)=W(k)—U(k), ()

where the exponent$ and # are anticipated to be noninte-
gral.

Indeed, in 1984, Polanfl3] studied a variety of lattice
models and a continuum fluid of hard squares and propos
that this repulsive-core singularity is characterized hyna

where the sum runs over lattice sifes=r;, while the repul-
sive and attractive partsy(k) and v(k), respectively, are
both positive(if they do not vanish identically More spe-
€fically we will use

versal exponentg(d). Subsequent confirmation came from W(k) =Wy(1—k2a2+---)>0, (9
Baram and Lubaf14] who investigated further models in-
cluding dimers on lattices, parallel hypercubes in continuum U(K)=0g(1—k?b%+--)>0, (10)

space, and thesoftcore single-component Gaussian-
molecule model. More recently, Lai and FisHéil found  so thata andb represent the interaction ranges of the repul-
similar behavior in ainary Gaussian-molecule mixture us- sive and attractive components. The real-space potentials act-
ing very long series expansions fde1,...,6. In that case, ing between siteg and k (j #k), namely,wj=w(r,—r;)
the singularity atz=z, was drawn out into a continuous andv=v(r,—r;), follow by Fourier inversion. Fod=3,
locus; but the estimates fa#(d) supported the universality one may imagine Yukawa formsw(r)=W.e "@/r and
hypothesis(Precise estimates, for the leading “correction- v(r)=Vqe "P/r with a<b; but that is certainly not essen-
to-scaling” exponentd(d), in Eq. (6) for all d, including tial. Likewise, the leading lattice isotropy assumed for con-
$(1)=1, 0(2)=5/6, and6(3)=0.62, were also generated venience in Eqs9) and(10) is not necessary. Our treatment
[7]) extends straightforwardly to multicomponent fluijdd and,
However, Lai and Fishef7] noticed in particular that, at least formally, generalizes readily to continuum systems.
when compared with previous knowledge about the Yang- On the basis of Eq$8)—(10), we develop a field-theoretic
Lee edge exponent(d), the exact results fotp(d) for d  analysis and show that there is, in general, a repulsive-core
=1 andd=o [15], and ford=2 [14,16], and the various singularity at some(T) on the negative activity axitsee
numerical estimate$7] for d=2, strongly suggested the Fig. 1) that is described within an Landau-Ginzburg-Wilson
identification (LGW) renormalization group framework by a fixed point
Hamiltonian with a purely imaginary cubic couplinigp®,
$(d)=o(d)+1 for all d. (7)  and, hence, lies in the same universality class as Yang-Lee
edge criticality. A notable aspect of our treatment is that
Hence they proposefi7] that theuniversal repulsive-core separate—sine-Gordar{19] and Kac-Hubbard-Stratonovich
singularity belongs to the Yang-Lee edge critical universality(KHS) [20—2—transformations are used for handling the
class repulsive and attractive parts of the interaction potential:

In analytical support of this identificatioffor generald)  compare with Refs[23] and[24].
they appealed to earlier work by Kurtze and FisHef] who

had proved that whef— o, the Yang-Lee edge singularity

in ferromagnetic Ising models precisely describes the domi-
nant singularity on the negative axis of a fluid of hard For a lattice of volumeV with sites labeledj,k,l
dimerson the same lattice, each dimer occupying one bond=1,2,..., N=V/v,, letp;=0 or 1 according as sifeis or is
and two adjacent lattice sites. This correspondence with aot occupied by a particle. Then, recalling E(®. and(8)—

1. FORMULATION
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(10) et seq, the grand partition function for the lattice system

IS

Z(T,Z):Tr "/;/,[ ZEjpj eX[{ - % B;k pJ(ij_ij)pk” .
J
(11)

Now, utilizing the positivity of w(k) and v(k), we may
apply a sine-Gordon transformatidd9] to the repulsive
terms,wj, , and a KHS transformatiof20—22 to the attrac-
tive termsv;, (where, as usual, it is most convenient to uti-
lize periodic lattice boundary conditiondNeglecting an un-
important constant factor, this yields

Z_f Do Dx
Viw[ ] v
XEXF{_ %% oW ek 3

X1V Iml)(m}

I,m

xTrL‘[{zZiPJ ex;{z (—i(pj+xj)ij, (12
J

wherew=[,8wjk]=[wj’k1]*1 and similarly forv. Performing
the trace over the; then yields the transformed reduced
Hamiltonian

Hle.x]1= %% (Wi okt XV xw)

—> In(1+ze 9. (13
]

Now, in seeking to understand the possible singularities i
the reduced pressu T,z) = (v, /V)In Z, we will, initially,
neglect fluctuations and study the saddle gsjntvhich ex-
tremize the integrand exp H[ ¢, x]} in Eq.(12). We expect
spatially uniform solutiong; = ¢q, x;j= xo (all j) to suffice:
from 9H/d¢;=0, one thus finds

ze ¢t X0

0, (14)

-1 H —
2 Wil oot T e =
for the repulsive terms. On premultiplying by the matwix
=[Bw] (see, e.g., Ref25]) and using the Fourier repre-
sentation(9), one obtains the simpler form

i o= BWo/(1+2z te~ (xo~ieo)), (15)
Similarly from dH/dx;=0 we find
Xo=BUo/(1+z te”xo~i¢0)), (16)

for the attractive terms.
Before analyzing these coupled saddle-point equation
note that if one puts

U= Xxo—i¢o (17)
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FIG. 2. Plot of e ¥ (bold curve versusy to elucidate solu-
tions of the saddle-point equati¢h8) in the case of only single-site
repulsive hard cores with attractive potentials of strength
(=—Uy), for various temperature@;, B., andB,, and positive
activities z. The open circle marks the point of inflection which
serves to locate thélassical gas-liquid critical point; the dashed
line is the associated tangent. The solution lines have slegen
accord with Eq(18).

where the total strength of the pair potential is measured by

Uo=U(0)=Wo— V. (19)

Furthermore, by substitution of any solution of E@8) on

the right-hand sides of Eq$15) and (16), one obtains the

separate solutiongy, which may evidently be imaginary,

and yg.

n ll. TRIVIAL HARD CORES AND GAS-LIQUID
CRITICALITY

We remark, first, that following the pioneering study of
Hubbard and Schofiel{6], all authors interested in ordi-
nary gas-liquid criticality have treated the repulsive interac-
tions in a fluid by use of aeference systenfor a recent
example, see Brilliantoy27]. Unless this reference fluid is
essentially trivial, as for single-site hard cores on a lattice,
this entails increasingly detailed knowledge of the correla-
tion functions of the repulsive-core systdi®6,27]. Never-
theless, it will be helpful for us to make contact with this
approach by, initially, neglecting the nontrivial repulsive in-
teractions embodied iw(r). If the attractions are also ne-
glected, the grand partition functidil) reduces simply to
Z=(1+2z)". This predicts a repulsive-core singularity at
zo=—1 (all T) with an exponent(d=0)=0(log)[7]. Evi-
dently, the actual dimensionalitg, plays no role.

Now, following traditional treatment&.g., Ref[25]) let
us introduce attractive terms with(k)>0. The KHS trans-
Sformation then leads to the saddle-point equati@8) in
Which, now,Uy,= —V,<0 is negative and we can identify
directly with y, (since Wwo=0 and / D¢ etc., can be ig-
nored. Figure 2 then provides a graphical representation of
Eqg. (18) which can be readily analyzed: note that the bold

the two equations combine simply and can be rewritten as curve depictsye™ ¥ which has a point of inflection a.

g '=—2z(y+BUy), (18

=2 and a corresponding tangent that intersects the axis at
=4 see the dashed line.
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A -z =2(T) Rather, the form of the Hamiltoniari{[¢,x], represents an
0.5- - - inadequate starting point for a perturbative RG approach:
| _ (d) instead, it becomes necessary to integrate (atitleast to
= some degreeghe repulsive terms, i.e., to perform sofh®¢
0.3 ~ integrals and, thereby, make contact with the reference-fluid
-~
A= 2<0 treatmentg§ 25—-27).
- — (c)
_
= | _ IV. THE REPULSIVE-CORE SINGULARITY
-1 ' i 2
-BU. L ° Wo(T) L4 On the other hand, when the repulsions dominate, so that
° ' " Uy>0 (as we will assume heregnone sees from Fig. 3

(b) [e.g., lines(c) and (d)] that for a realnegative zthere is a
\ z>0 unique positive saddle-point solution, sgy (T,z)<1, that
L o4 vanishes wherz—0. However, wherz approachesy(T)

(a) <0 (from above a bifurcation point is reached at which the
saddle point must become complex: see the broken line in
FIG. 3. Plot of e~ ¥ to illuminate the saddle-point equation Fig. 3 that corresponds te=z,(T). (At z=z, a second,

(18) as in Fig. 2; but note the change in scales. The dominantarger saddle-point solution, . (T,z), merges with
repulsive case withJ,=W,—V,>0, is illustrated for positive ac- ¢ _(T,z). Forz much larger, additional realegativesaddle-
tivities z [lines (a) and (b)] and negative activitieqc) and(d) and  point solutions g, , appear, but these are not relevant to the
the tangentdashed linpwhich locates the repulsive-core singular- dominant repulsive-core singulariyAs is evident from Fig.

ity at z=2o(T) <0 with field ¢(T). 3, the bifurcation point is located by the tangent passing
throughy = — BU(<<0: this leads to

By inspection, one then sees that wheimcreases from
z=0 (along the real axjsfor temperatures such thgv, 0=<yo(T)= L BU[1+(4kgT/Ug)]H2—11<1, (20)
<4, there is always a single saddle-point solutigg(T,z),
which varies analytically withT and z see, e.g., the lines

labeled(a) and (b) in Fig. 2. Conversely, for loweT, when nd

BVy>4, there is a single analytic solutiomy(T,z), for

smallz[as on the lingc)] but for an intermediate range of Zo(T)=—[1—tho(T) Jexd — ¢ho(T) ],

three distinct solutions arise, as illustrated(dy; finally, for ~—1/efUg[1+O(1/8U,)], 21)

largerz only a single solution remains: lie). Evidently the

three solutions merge at a bifurcation point determined by ) )

the inflection point aty,=2: this leads to8.0,=4 andz, e last result applying for strong repulsiongU,— ).

— e 2=0.135. Expanding[x] in powers of B—B.), (z Clearly, this saddle-point bifurcation represents the
—2;) and 8x;=x;— xc. all taken as real variables, shows repulsive-core singularity.

that this saddle-point bifurcation simply represents the antici- Incidentally, if following Hauge and Hemmdd5], we
pated classical or mean-field gas-liquid critical point ath@d treated thed=1)-dimensional continuum hard-rod gas

keTO=10,. As usual, the corresponding LGW Hamiltonian with additional infinite-range, infinitely weak repulsive Kac
C * '

can be used as a starting point in a field-theoreticaPotentials, we would, at this point, have fourzh=

renormalization-groupRG) treatment which then leads to all /68U, in precise accord with the exadimiting) calcu-
the standard results. lations[15]. But, of course, our saddle-point treatment is not

On the other hand, foB=<3., i.e., T=T,, one can fol- restricted tod=1 even though in the Kac limit it will also
il -~ C» oy -~ (o}
low Ref.[4] and discover two Yang-Lee edge singularities atP€cOmMe exact. .
To complete the analysis we may now follow standard

complexz (with small imaginary parts whef is nearT.): at ) '
the saddle-point level these hawe=; but the fixedfpoint procedures by expanding about the saddle point values
and o [following from Egs. (15—(17)]. In terms of 5¢;

Hamiltonian is controlled by ai(sy)® coupling leading, as ) i
explained above, to an R&=6—d expansior[4]. =@~ @0, OX;=Xj~ Xo, andady; = x; —idg;, the Hamil-
If, next, small repulsive termsyv>0, are introduced, the tonian truncated at fourth order becomes
overall interaction parameted,=Wy—V,, in Eq. (18) re-
mains negative, and the arguments proceed in essentially th
same mannefalthough, in due course, the field for the
repulsive terms would normally be integrated Jouks ex-
pected, neither the usual gas-liquid nor the Yang-Lee edge
singularities undergo any change in character. However, if
W, becomes sufficiently largelJ, becomespositive and
then, clearly, the previous analysis fails! In particular, as
seen in Fig. 3lines (a) and(b)], for positive(rea) z, there is o )
always only a single, smoothly varying saddle-point solutionWhere it is convenient to put
o(T,z). Of course, this doesot (necessarilymean that the
usual gas-liquid and Yang-Lee edge singularities are lost. L(T,z2)=—z te %/(1+72 te Y0, (23

H[ 8¢, 5x]= % (oWt X Viex)

+Ej [5 1o( 82— go(8¢))3+uo( 5¢) ],

(22)
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(which is real and positive for=z, when|=0,2,4,..) so
thatry=¢,(T,z) and

Jo=3 {a(1+80), Uo= 2 La(1+4L+ D).

In the usual continuum approximation this becomes

(29

H:f dX[ 3 1 13802(X) + T 1280(X) Sx(X) + 3 I 28x3(X)

+3¢,(Vo@)?+ 3 ¢, (Vox)* =gy’ (x) + Ugsy*(x)],

(25)
with ¢,=a?/ BW, andc,=b? 7, and
r11=kgT/Wo—{2(2,T),  r=ksT/Vo+{a(Z,T),
o= —145(2,T). (26)

Before proceeding generally, let us suppose that only r
pulsive terms act, i.e¥;p=0. Then we may drop the integrals

I Dx and see, by Eq(l7), that 5y=—id¢; but note that
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tion of ¢ and &y will become critical. To check this at the
saddle-point level, it suffices to put

Ox(X)=0x" (X) +1(£2/739) S¢(X). (31)

The quadratidnongradientterms in Eq.(25) then become
21(8h)%+ 15 8x")%. (32)

The coefficientr,,(T,z) remains positive for all negative
but one finds

i to(T.2)
oo [1+B%(1— o)/ y3]’

t(T,Z)=I’11— (33)

for z=z,: thus, by EQq.(28), t vanishes wherz—zy(T).
Integration over the noncritical fieldy’(x) is hence justi-

€fied and may be carried out perturbatively. Apart from addi-

tive terms that are nonsingular neg(T), this finally leads
to a renormalized LGW Hamiltonian

¥o(T) remains real, positive and less than unity. The con-

tinuum Hamiltonian then reduces to

Hol 01 [ a5 to(50)°

+ 3¢, (Vop)?—igoded+upde®], (27)

where the controlling coefficient is
. 1 L2 [1—2zzye?0(D] -
(T2 =ru=pa-| 1= 2| s zehmpZ (28

which is positive for smalk, decreases as= —|z| increases
in magnitude, and vanishes linearly when>zy(T)+ <O0.

The fourth order coefficientyg, is positive and approaches

Uoo=% (1= ) (1= oo+ 2 g2 y3>0, (29

when z—zy(T), while the cubic term is purely imaginary

with a coefficient approaching

Joo=— & (1— o) (2— o)/ 3 < 0. (30)

Hel S¢]= f dIx[ § tr( @)%+ 3 ai(Vée)?

—ihrSe—igr(8¢)®+:], (34)
where the fourth and higher order terms have been dropped.
For v, sufficiently small, the renormalized couplings and
gr Will differ little from t andg and, in particularhg andgg
will be real, so that theé(5¢)® term once again dominates.
Stability of the saddle point requires that the renormalized
repulsive rangeag, in Eq. (34) be real (and positive.
Roughly, we expecaZ> (a’W,— b?0,): the positivity of this
factor then represents a previously unstated restriction on the
initial potentials. In practice, however, if thi@r the more
precise condition fails, it may be sufficient, as explained in
the discussion of gas-liquid criticality, to perform further,
nonperturbative renormalizations to dampen the attractive in-
teractions forz<0 and so expose again a saddle-point rep-
resentation of the repulsive-core singularityzgtT). Cer-
tainly, we must expect the forn{34) to represent the
singularity whenever it is actually realized in a system; and,
then, clearly it must belong to the Yang-Lee edge universal-
ity class.

V. CONCLUSIONS

At this point we have thus reached the same stage as in /N Summary, by using separate field-theoretic transforma-
the original treatmeri4] of the Yang-Lee edge singularities. 1ONS for the repulsive and attractive parts of the pair inter-
The imaginary termi(d¢)® dominates the behavior. A actionsin a fluid, we have demonstrated, in general, the pres-
momentum-shell RG analysis reveals an upper critical di€NCce of a universal repulsive-core singularity on the negative

mensiond.= 6, an exponenty~ — e for e=6—d>0, and,

axis at a valuezy(T)<O0: see Fig. 1. The behavior of the

using a unit cutoff in momentum space, a fixed point valugPressure in the vicinity of, is stated in Eq(6). The singu-
of 93”(6/544(6)1/2, whereKg is the area of the unit sphere larity belongs to the same universality class as Yang-Lee

atd=6 dimensions. All other results follow as previoufly
7].

Returning now to the general case of E&5), in which
attractive interactions are presefite., v,>0) but U, re-

edge criticality, as proposed by Lai and Fishe}. see Egs.
(1)—(4) and Fig. 1. The basic critical exponents are related
via Eq. (7) (see alsd7]); the borderline dimensionality is
d.=6; and ani¢® coupling characterizes the LGW fixed-

mains positive, we anticipate that only one linear combinapoint Hamiltonian[4].
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